No-reference image quality assessment with shearlet transform and deep neural networks
نویسندگان
چکیده
Nowadays, Deep Neural Networks have been applied to many applications (such as classification, denoising and inpainting) and achieved impressive performance. However, most of these works pay much attention to describe how to construct the relative framework but ignore to provide a clear and intuitive understanding of why their framework performs so well. In this paper, we present a generalpurpose no-reference (NR) image quality assessment (IQA) framework based on deep neural network and give insight into the operation of this network. In this NR-IQA framework, simple features are extracted by a new multiscale directional transform (shearlet transform) and the sum of subband coefficient amplitudes (SSCA) is utilized as primary features to describe the behavior of natural images and distorted images. Then, stacked autoencoders are applied as ‘evolution process’ to ‘amplify’ the primary features and make them more discriminative. Finally, by translating the NR-IQA problem into classification problem, the differences of evolved features are identified by softmax classifier. Moreover, we have also incorporated some visualization techniques to analysis and visualize this NR-IQA framework. The resulting algorithm, which we name SESANIA (ShEarlet and Stacked Autoencoders based Noreference Image quality Assessment) is tested on several database (LIVE, Multiply Distorted LIVE and TID2008) individually and combined together. Experimental results demonstrate the excellent performance of SESANIA, and we also give intuitive explanations of how it works and why it works well. In addition, SESANIA is extended to estimate quality in local regions. Further experiments demonstrate the local quality estimation ability of SESANIA on images with local distortions. & 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Proposal for Qualifying Exam
Convolutional Neural Networks (CNNs) are a type of deep neural network which have performed well at image and audio classification. One approach to understanding the success of CNNs is Mallat’s scattering transform, which formalizes the observation that the filters learned by a CNN have wavelet-like structure. The resulting transform generates a representation that is approximately translation ...
متن کاملA Machine Learning Approach to No-Reference Objective Video Quality Assessment for High Definition Resources
The video quality assessment must be adapted to the human visual system, which is why researchers have performed subjective viewing experiments in order to obtain the conditions of encoding of video systems to provide the best quality to the user. The objective of this study is to assess the video quality using image features extraction without using reference video. RMSE values and processing ...
متن کاملImproving the quality of images synthesized by discrete cosines transform – regression based method using principle component analysis
Purpose: Different views of an individuals’ image may be required for proper face recognition. Recently, discrete cosines transform (DCT) based method has been used to synthesize virtual views of an image using only one frontal image. In this work the performance of two different algorithms was examined to produce virtual views of one frontal image. Materials and Methods: Two new meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 154 شماره
صفحات -
تاریخ انتشار 2015